Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. Anitha, B. Sridhar and R. K. Rajaram*

Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.117$
Data-to-parameter ratio $=8.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

l-Valinium picrate

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{NO}_{2}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, the carboxyl group of the valinium residue is engaged in a strong hydrogen bond with the picrate anion. The amino group of the L-valinium cation and the picrate anion are held together by an intermolecular hydrogen bond. The valine residue is involved in a zigzag (Z1) head-to-tail sequence.

Comment

Valine is an essential amino acid. The crystal structures of L-valine (Torii \& Iitaka, 1970), DL-valine (Mallikarjunan \& Rao, 1969), l-valine hydrochloride monohydrate (Rao, 1969), L-valine hydrochloride (Parthasarathy, 1966; Ando et al., 1967), DL-valine hydrochloride (Di Blasio et al., 1977), L-valinium nitrate (Srinivasan et al., 1997), L-valine L-valinium perchlorate monohydrate (Pandiarajan et al., 2001), DL-valinium nitrate (Srinivasan et al., 2002) and DL-valinium perchlorate (Sridhar et al., 2003) have been reported. The crystal structure of picric acid (Soriano-Garcia et al., 1978; Srikrishnan et al., 1980; Duesler et al., 1978) has also been reported. In the present work, the crystal structure of L-valine with picric acid is reported, viz. (I).

In the valinium ion of (I), the unsymmetrical carboxyl bond distances and angles $[1.212$ (3)/1.297 (3) \AA and 120.9 (2)/

Figure 1

The molecular structure of title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2
Packing diagram of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
$112.5(2)^{\circ}$] clearly indicate protonation of the carboxyl group (Fig. 1). With regard to the backbone conformation angles, ψ^{1} is in the cis form and ψ^{2} is in the trans form. All three rotational isomers of the valinium molecule, viz. gauche-I/gaucheII, gauche-I/trans and gauche-II/trans, have been found in the crystalline state (Torii \& Iitaka, 1970). With regard to the sidechain conformation angles, χ^{11} is in the trans form and χ^{12} is in the gauche-II form. Atoms C11 and N11 are trans to C15 and C14, respectively, indicating a trans isomer for the present valinium residue.

In the picrate anion, the nitro groups play a vital role in forming hydrogen bonds. There is no relationship between the $\mathrm{C}-\mathrm{N}$ bond distances and the amount of twisting of the nitro groups from the mean benzene plane (Soriano-Garcia et al., 1978). In the picrate anion, one nitro group [C5-C6-N3$\left.\mathrm{O} 7=2.6(5)^{\circ}\right]$ is almost coplanar with the plane of the benzene ring, while the other two nitro groups $[\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{O} 3=$ $-34.0(5)^{\circ}$ and $\left.\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2-\mathrm{O} 5=-23.8(4)^{\circ}\right]$ are twisted away from the ring.

The valinium cation and picrate anion are linked by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. The amino N atom of the $\mathrm{L}-$ valinium cation forms $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the O atoms of the picrate anion. In addition, an intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the carbonyl O atom is observed. Two three-centred hydrogen bonds and one two-centred hydrogen bond are observed, leading to a class III hydrogenbonding pattern (Jeffery \& Saenger, 1991). A zigzag (Z1) head-to-tail sequence is observed (Vijayan, 1988), leading to the formation of a helix along the b axis. The amino group links three different picrate anions into an infinite chain along the b axis $\left[\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 4^{\mathrm{iii}}\right.$ and $\mathrm{N} 11-\mathrm{H} 11 C \cdots \mathrm{O} 1 / \mathrm{O} 5^{\mathrm{iv}}$; symmetry code: (iii) $-x, \frac{1}{2}+y,-z$; (iv) $\left.-x, y-\frac{1}{2},-z\right]$. Across the $x=\frac{1}{2}$ and $z=\frac{1}{2}$ planes, no hydrogen bonding is observed, leading to some of the O atoms of the picrate anion not being involved in hydrogen bonding (O2, O3 and O7) (Fig. 2). These O atoms are also found to have large $U_{\text {eq }}$ values.

Experimental

The title compound was crystallized by slow evaporation, under ambient conditions, of an equimolar solution of L -valine and picric acid.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$
$M_{r}=346.26$
Monoclinic, $P 2_{1}$ 。
$a=9.9714$ (13) A
$b=6.2930$ (5) \AA
$c=12.6480(9) \AA$
$\beta=110.50(1)^{\circ}$
$V=743.40$ (13) \AA^{3}
$Z=2$
$D_{x}=1.547 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$

D_{m} measured by flotation in a mixture of carbon tetrachloride and xylene
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.0-14.0^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.35 \times 0.20 \times 0.12 \mathrm{~mm}$

Data collection

Nonius MACH3 four-circle
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.942, T_{\text {max }}=0.999$
2454 measured reflections
1766 independent reflections
1564 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1203 P)^{2}\right. \\
\quad+0.2829 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.47 \mathrm{e}^{-3} \mathrm{~A}^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.117$
$S=1.16$
1766 reflections
217 parameters
H -atom parameters constrained

$$
R_{\mathrm{int}}=0.021
$$

$\theta_{\text {max }}=27.0^{\circ}$
$h=-1 \rightarrow 12$
$k=-1 \rightarrow 8$
$l=-16 \rightarrow 16$
3 standard reflections
frequency: 60 min
intensity decay: none

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{C} 11$	$1.212(3)$	$\mathrm{O} 1 B-\mathrm{C} 11$	$1.297(3)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{O} 1 B$	$126.6(2)$	$\mathrm{O} 1 B-\mathrm{C} 11-\mathrm{C} 12$	$112.5(2)$
$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 12$	$120.9(2)$		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{O} 3$	$-34.0(5)$	$\mathrm{O} 1 A-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 11$	$-28.3(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 3-\mathrm{O} 6$	$4.3(5)$	$\mathrm{O} 1 B-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 11$	$153.1(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{O} 2$	$-41.8(4)$	$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 15$	$-59.9(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2-\mathrm{O} 5$	$-23.8(4)$	$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$175.7(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 2-\mathrm{O} 4$	$-23.8(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 15$	$-178.8(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 3-\mathrm{O} 7$	$2.6(5)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$56.9(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.87	$2.678(3)$	167
$\mathrm{~N} 11-\mathrm{H} 11 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.89	2.46	$3.233(3)$	146
$\mathrm{~N} 11-\mathrm{H} 11 A \cdots 4^{\text {iii }}$	0.89	2.40	$2.898(4)$	115
$\mathrm{~N} 11-\mathrm{H} 11 B \cdots \mathrm{O} 1 A^{\mathrm{iii}}$	0.89	1.96	$2.825(3)$	164
$\mathrm{~N} 11-\mathrm{H} 11 C \cdots \mathrm{O}^{\mathrm{iv}}$	0.89	2.20	$2.807(3)$	125
$\mathrm{~N} 11-\mathrm{H} 11 C \cdots \mathrm{O}^{\text {iv }}$	0.89	2.06	$2.872(4)$	150

Symmetry codes: (i) $x, y-1, z$; (ii) $x, y, z-1$; (iii) $-x, \frac{1}{2}+y,-z$; (iv) $-x, y-\frac{1}{2},-z$.

The carboxyl H atom was fixed in the position found in a difference map, and all other H atoms were placed in calculated positions and included in the refinement in the riding-model approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the carrier atom $\left(1.5 U_{\text {eq }}\right.$ for methyl and ammonium H atoms). 649 Friedel pairs were merged in the final cycle of refinement, and the absolute configuration was assumed from that of L -valine.

organic papers

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Department of Science and Technology, Government of India, for establishing the SingleCrystal Diffractometer Facility at the School of Physics, Madurai Kamaraj University, Madurai, through a FIST programme. BS thanks the Council of Scientific \& Industrial Research (CSIR), Government of India. Financial support from UGC is acknowledged.

References

Ando, Q., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 23, 172173.

Di Blasio, B., Napolitano, G. \& Peone, C. (1977). Acta Cryst. B33, 542-545. Duesler, E. N., Engelmann, J. H,. Curtin, D. Y. \& Paul, I. C. (1978). Cryst. Struct. Commun. 7, 449-453.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Jeffery, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mallikarjunan, M. \& Rao, S. T. (1969). Acta Cryst. B25, 296-303.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pandiarajan, S., Sridhar, B. \& Rajaram, R. K. (2001). Acta Cryst. E57, o466o468.
Parthasarathy, R. (1966). Acta Cryst. 21, 422-426.
Rao, S. T. (1969). Z. Kristallogr. 128, 339-351.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Soriano-Garcia, M., Srikrishnan, T. \& Parthasarathy, R. (1978). Acta Cryst. A34, S-114.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Srinivasan, N., Rajaram, R. K. \& Jebaraj, D. D. (1997). Z. Kristallogr. 212, 311312.

Srinivasan, N., Sridhar, B. \& Rajaram, R. K. (2002). Acta Cryst. E58, o895o897.
Sridhar, B., Srinivasan, N., Dalhus, B. \& Rajaram. R. K. (2003). Acta Cryst. E59, o28-o30.
Srikrishnan, T., Soriano-Garcia, M. \& Parthasarathy, R. (1980). Z. Kristallogr. 151, 317-323.
Torii, K. \& Iitaka, Y. (1970). Acta Cryst. B26, 1317-1326.
Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.

